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Introduction 

The CSD Python API provides access to the full breadth of functionality that is available within the 

various user interfaces (including Mercury, ConQuest, Mogul, IsoStar and WebCSD) as well as 

features that have never been exposed within an interface. Through Python scripting it is possible to 

build highly tailored custom applications to help you answer detailed research questions, or to 

automate frequently performed analysis steps. 

This tutorial will cover a range of aspects of the CSD Python API, building from an initial introduction 

to the basic mechanics of input and output through a Python console, to the CSD Python API menu 

in Mercury, and finally to advanced Python scripting. The applications illustrated through these case 

studies are just as easily applied to your own experimental structures as they are to the examples 

shown here using entries in the Cambridge Structural Database (CSD). 

The following exercises assume that you have a working knowledge of the program Mercury, as well 

as a very basic understanding of Python. If you require any further assistance with any aspect of 

what is contained within this workshop material, please do not hesitate to ask your workshop 

instructor, or consult the online Python documentation at https://docs.python.org/2/ or the help 

guides included within Mercury.  

 

 

CSD Python API scripts can be run from the command-line or from within Mercury to achieve a wide range of analyses, 
research applications and generation of automated reports  

  

https://docs.python.org/2/


 

Case Study 1: Demonstrating Input and Output 

Aim 

This case study will focus on understanding the basic principles of using the CSD Python API. We will 

use the CSD Python API interactive console to learn about input and output, and we will cover the 

concepts of Entries, Molecules and Crystals. 

Instructions 

1. We can launch the CSD Python API interactive console by clicking “ CSD Python API” from 

the Start Menu (Windows) or /Applications/CCDC/Python_API_2019/run_csd_python_api 

(macOS). This will open an interactive Python console that uses the CSD Python API that is 

included with the CSD-System. 

 

2. When we see “>>>” in the console window, it means that Python is ready for a command. We 

will type all of our code after these “>>>” and hit “Enter” to send these instructions to Python. 

 

3. The CSD Python API makes use of different modules to do different things. The ccdc.io module 

is used to read and write entries, molecules and crystals. To make use of modules, we first need 

to import them. Type the following into the Python console then hit “Enter”: 
 

from ccdc import io 

 

After a few seconds, the “>>>” will appear again, indicating that we have successfully imported 

the ccdc.io module. We will now explore some of what this module allows us to do. 

 

4. Entries, molecules and crystals are different types of Python objects, and have different 

characteristics, although they do have a number of things in common. They each have readers 

and writers that allow for input and output respectively. We will start by setting up an entry 

reader and using it to access the CSD. Type the following into the Python console then hit 

“Enter” after each line: 



 

 

entry_reader = io.EntryReader('CSD') 

first_entry = entry_reader[0] 
print first_entry.identifier 

 

You should see that Python has returned “AABHTZ”, which is the identifier of the first entry in 

the CSD. Giving the 'CSD' argument to the EntryReader will open the installed CSD database, 

and it is possible to open alternative or multiple databases in this way. Similar methods can be 

used to read molecules or crystals with a MoleculeReader or CrystalReader instance. 

 

5. From an entry object, it is also possible to access the underlying molecule or crystal for that CSD 

entry. We will explore this using paracetamol (CSD Refcode HXACAN). Type the following into 

the Python console then hit “Enter” after each line (Note – the four spaces before print are 

very important!): 
 

hxacan_entry = entry_reader.entry('HXACAN') 

hxacan_molecule = hxacan_entry.molecule 

for atom in hxacan_molecule.atoms: 

    print atom.label 

 

You should see that Python has returned the label for each atom in the paracetamol molecule. 

What we are doing here is accessing the entry HXACAN directly from our EntryReader, then 

accessing the underlying molecule from this entry. We then use a for loop to iterate through 

each atom in the molecule, and print out its atom label. for loops are used to iterate through 

each item in a list of items – the atoms in the molecule in this case. for loops are really useful, 

and allow us to iterate through everything from the atoms in a molecule to entries in the CSD. 

 

6. We can also read entries, molecules and crystals from a number of supported file types. We are 

going to use an example .cif file to illustrate this. For this demonstration, we will use the 

provided example.cif (which you can access here) and place it into a folder that we have read 

and write access to, in this case C:\training\. 

We need to tell Python where to find this file, so type the following into the Python console then 

hit “Enter”: 
 

filepath = r"C:\training\example.cif" 

 

Python doesn’t like spaces or backslashes in file paths! The r and double quotes (" ") help us to 

get around this.  

 

7. Now that Python knows where our .cif file is located we can access the crystal using a 

CrystalReader, so type the following into the Python console then hit “Enter” after each line: 
 

crystal_reader = io.CrystalReader(filepath) 

tutorial_crystal = crystal_reader[0] 
print tutorial_crystal.spacegroup_symbol 

 

The Python console should display the spacegroup of our example crystal, P21/n. The 0 means 

that we want to access the first crystal in the .cif (when we have multiple items in a list or a file, 

Python starts numbering them from zero).  

 

https://downloads.ccdc.cam.ac.uk/tutorials/API/csd-python-api-wkshop.zip


 

8. It is good practice to close files when we are finished with them, but before we do we are going 

to take the underlying molecule from our tutorial crystal for use later. Type the following into 

the Python console then hit “Enter” after each line: 
 

tutorial_molecule = tutorial_crystal.molecule 

crystal_reader.close() 

 

9. The CSD Python API can also write entries, molecule and crystals to a number of supported file 

types. To do this, we need to tell Python where we actually want the file to be written. We will 

continue to use our C:\training\ folder, and we will use this to set up our new file as a variable. 

To do this, type the following into the Python console hitting “Enter”:  
 

f = r"C:\training\mymol.mol2" 

 

10. With this new variable we can use the CSD Python API to create a .mol2 file that contains the 

molecule from the example .cif file that we kept from earlier. To do this, type the following into 

the Python console then hit “Enter” after each line: 
 

with io.MoleculeWriter(f) as mol_writer: 

    mol_writer.write(tutorial_molecule) 

 

Here, the with statement ensures that we automatically close the mol_writer and the file when 

we have written our molecule.  

 

What we have done in this last step is to create a file mymol.mol2 in our folder, then write the 

molecule we kept from earlier into it. In this way, we can write out molecules, crystals and 

entries that we have obtained or modified and use them for other tasks and with other 

programs. 

 

Conclusions 

The CSD Python API was used with the built-in Python console to explore input and output of various 

objects and file types using the ccdc.io module. 

The concepts of an entries, molecules and crystals were illustrated here along with some of the ways 

in which these are related. 

You should now know how to run the CSD Python API from a Python console, and have an 

appreciation of how objects and files are read into and written out of the CSD Python API. 

  



 

Case Study 2: Customising a simple script for use in Mercury 

Aim 

This case study will be focussing on the basics of how Mercury interacts with the CSD Python API, 

where scripts can be stored for use in Mercury and how to make small edits to an existing script. We 

will make use of a published crystal structure and a supplied Python script, and then illustrate how 

to report some useful information about the structure that is not normally accessible from within 

Mercury. 

Example system 

The example system we will be looking at for this case study is 4-acetoamido-3-(1-acetyl-2-(2,6-

dichlorobenzylidene)hydrazine)-1,2,4-triazole (shown below) which happens to be the compound 

featured in the first entry of the Cambridge Structural Database with the CSD refcode AABHTZ.  

 

CSD refcode AABHTZ chemical diagram 

Instructions 

1. Launch Mercury by clicking its icon .  In the Structure Navigator toolbar, type AABHTZ to bring 

up the first structure in the CSD.  

 

2. From the top-level menu, choose CSD Python API, and then select welcome.py from the 

resulting drop-down menu. This will run a simple Python script from within Mercury and 

illustrate the basics of how Mercury interacts with CSD Python API scripts. 

 

3. Once the script has finished running, a new window will pop-up displaying the output of the 

script containing the CCDC logo and a few details about both the structure we are looking at and 

the set-up of your system. 



 

 

4. The second line of text in the script output reports the identifier of the structure that we have 

displayed in the Mercury visualiser – AABHTZ – this is generated by the Python script and would 

change if we ran the script with another entry or other structural file displayed. 

 

5. The third line of text in the script output reports exactly where the output file is located. The 

contents of this output window that popped up are encoded in a simple HTML file. Browse to 

the location shown using a file navigator on your computer (e.g. the File Explorer application on 

Windows). Right-click on the HTML file in that folder and open it with a file editor such as 

notepad – you should see that this file only contains a few lines of HTML text to produce the 

output you observed. 

[For small scale editing of text files and Python scripts, such as the edits made in this case study, we 

would recommend Notepad++ for Windows (https://notepad-plus-plus.org/) and TextWrangler for 

macOS (available in the App Store). For more in-depth Python editing or for interactive work, try 

looking at PyCharm (https://www.jetbrains.com/pycharm/) or Jupyter (https://jupyter.org/).]  

6. The fourth line of text in the script output reports where the actual script that you just ran is 

located – this will be contained within your Mercury installation directory. Browse to the folder 

location as before using a file navigator. This folder contains all the scripts bundled with the 

Mercury installation for immediate use upon installing the system. 

 

7. Copy the welcome.py file in this folder and paste it into a location where you have write 

permissions on the computer you are using. A good option if you are unsure about this on 

Windows would be C:\Users\[username]\scripts\, with [username] replaced by whatever your 

user name is on the machine (note: you will need to create the scripts folder). At the same time, 

also copy the file named mercury_interface.py from the Mercury installation directory to your 

location where you have write permissions. Note that the mercury_interface.py script will not 

https://notepad-plus-plus.org/
https://www.jetbrains.com/pycharm/
https://jupyter.org/


 

appear in the Mercury menu – this is intentional as this is a helper script that is not meant to be 

run on its own, so it is automatically hidden. 

 

8. Now we are going to configure a user-generated scripts location in Mercury. To do this, from the 

top-level menu, choose CSD Python API, and then select Options from the resulting drop-down 

menu. Click on the Add Location button, browse to the folder where you just saved the copy of 

the welcome.py script and click on Select Folder. This will register the folder as an additional 

source of scripts that Mercury will add to the CSD Python API menu. 

 

9. Now go to the CSD Python API top-level menu and you should see that there is a new section in 

the drop-down menu, listing user-generated scripts, with an item for your copy of the 

welcome.py script. Click on the copy of the welcome.py script in your user scripts area of the 

menu. In the output you will see that the location of the script now matches your user-

generated scripts folder location. 

 

10. We are now going to make some edits to the Python script to display some additional 

information about the structure on display. To edit the Python script, right-click on the copy of 

welcome.py in your user folder and open it in your text editor. 

 

11. Many of the lines in this script are comments (all those starting with ‘#’) to help explain how the 

script works and how the interaction between Mercury and the CSD Python API works. You 

should see a number of references to a helper function called MercuryInterface. 



 

 

12. At the bottom of the script are a series of lines that write the HTML output, each of these lines 

use the Python command to write to a given file: ‘f.write()’. Look for the line including the 

instruction ‘f.write(helper.identifier)’ – this writes to the output file the identifier for the CSD 

entry, which in this case is ‘AABHTZ’. 

 

13. Copy this line along with the lines both directly before and after it, and then paste the group of 

three lines again underneath the original group of three in the Python file. Edit the text within 

the brackets as shown below – this will output an additional line of text as well as reporting both 

the formula relating to the CSD entry and the chemical name. 

f.write('This is the identifier for the current structure: ') 

f.write(helper.identifier) 

f.write('<br>') 

f.write('These are some extra parameters for the current structure: ') 

f.write(entry.formula + ' ' + entry.chemical_name) 

f.write('<br>') 

 

14. In the welcome.py script, we have already accessed the entry object for our structure, in this 

case the CSD entry AABHTZ. Here we are editing the script to simply read out some further 

attributes of the entry, namely the chemical formula and the chemical name. If you want to see 

what other attributes an entry object has, look at the CSD Python API on-line documentation by 

choosing CSD Python API from the Mercury top-level menu, and then selecting CSD Python API 

Documentation from the resulting drop-down menu. 

 

15. Now re-run the welcome.py script from the user-generated scripts section of the CSD Python 

API top-level menu. You will see in the HTML output the additional text and variables relating to 

the edits that we made to the script.  

 

 



 

Conclusions 

The initial Python script that we ran was copied into a user-generated scripts location and edited to 

add further functionality to it. Mercury allows multiple user-generated script locations and scripts 

saved in these areas can be called directly from the menus in the program. 

The concept of an entry was illustrated here along with some of the attributes that an entry has such 

as identifier, formula and chemical name. An entry also contains a crystal attribute, from which 

further information can be extracted and analyses performed. 

You should now know how to run a CSD Python API script from within Mercury as well as how to 

customise a script and manage user-generated scripts in Mercury. 

 

  



 

Case Study 3: Searching the CSD for specific interactions 

Aim 

This case study will focus on using the CSD Python API to carry out a substructure search across the 

CSD. We will learn how to define substructures, how to apply search settings and constraints, and 

then how to visualise the data graphically. 

Example system 

In this example we will investigate the interaction geometry of an aromatic iodine and the nitrogen 

atom of a pyridine ring. We wish to know if the C-I···N angle tends towards 180° as the I···N distance 

becomes shorter. Figure 1 illustrates the substructure that we will search the CSD for, with the 

relevant geometric parameters indicated. 

 

The halogen bonding substructure with defined geometric parameters 

Instructions 

1. Open your preferred text editor and create a new Python file called interaction_search.py that 

we will run from a command line later on. The following steps show the code that you should 

write in your Python file, along with explanations of what the code does. 

 

2. We will start by importing the necessary modules for carrying out the substructure search and 

visualising the data: 

 
import matplotlib 

matplotlib.use('TkAgg') 

import matplotlib.pyplot as plt 

import ccdc.search 

 

In order to perform a substructure search, we must import the ccdc.search module. 

Additionally, the matplotlib.pyplot module will allow us to generate plots to visualise our 

results. We declare matplotlib.pyplot as plt in order to save us a lot of typing later on! 

 



 

3. There are a number of ways that we can define our substructure, but for this example we will 

make use of SMARTS strings: 

ar_I_sub = ccdc.search.SMARTSSubstructure('Ic1ccccc1') 

pyridine_sub = ccdc.search.SMARTSSubstructure('n1ccccc1') 

 

Here, ar_I_sub specifies the aromatic iodine substructure, and pyridine_sub specifies the 

pyridine substructure, with respective SMARTS strings of Ic1ccccc1 and n1ccccc1. Note that 

our atoms of interest, I and N, are both at index 0 of the SMARTS strings we have defined. If you 

are unfamiliar with SMARTS strings, you can visualise them and learn more about the format 

with SMARTSviewer (http://smartsview.zbh.uni-hamburg.de/).  

 

4. We then create our substructure search, which we will call halogen_bond_search: 

halogen_bond_search = ccdc.search.SubstructureSearch() 

 

and add the substructures that we created in the previous step: 

 
ar_I_sub_id = halogen_bond_search.add_substructure(ar_I_sub) 

pyridine_sub_id = halogen_bond_search.add_substructure(pyridine_sub) 

 

We have added our substructures in this way, giving them identifiers, so we can add our 

geometric constraints later. 

 

5. We can also specify various criteria for searches by changing the search settings. We can do this 

in the following way: 

halogen_bond_search.settings.only_organic = True 

halogen_bond_search.settings.no_disorder = 'all' 

halogen_bond_search.settings.max_r_factor = 5.0 

 

This will change certain settings of our halogen_bond_search. Here, we have specified that 

we only wish to search the CSD for organic structures with no disordered atomic positions and a 

crystallographic R-factor of 5.0 or less. 

 

6. We will now apply geometric constraints to our substructure search to limit our search to 

structures which display characteristic halogen bonding interactions. We will first specify our 

distance constraint (DIST1 in Figure 1): 

halogen_bond_search.add_distance_constraint('DIST1', 

                                            ar_I_sub_id, 0, 

                                            pyridine_sub_id, 0, 

                                            (0.0, 3.4), 

                                            'Intermolecular') 

 

Here we have defined an intermolecular distance, DIST1, between the atom at index 0 of our 

aromatic iodine substructure (the iodine atom) and the atom at index 0 of our pyridine 

substructure (the nitrogen atom). Additionally, we have specified that this distance must be 

between 0.0 and 3.4 Å. 

 

http://smartsview.zbh.uni-hamburg.de/


 

Similarly, we can specify our angle constraint (ANG1 in Figure 1): 

halogen_bond_search.add_angle_constraint('ANG1', 

                                         ar_I_sub_id, 1, 

                                         ar_I_sub_id, 0, 

                                         pyridine_sub_id, 0, 

                                         (120.0, 180.0)) 

 

Here we have defined an intermolecular C-I···N angle and specified that it must lie between 

120.0° and 180.0°. 

 

7. We are now ready to perform our substructure search. To avoid bias by picking multiple 

observations from the same structure we will limit the number of hits per structure to 1: 

halogen_bond_hits = halogen_bond_search.search(max_hits_per_structure=1) 

 

This will perform the substructure search, which should take less than a minute. The results from 

the search will be stored in the variable halogen_bond_hits. 

 

8. We can now extract our data from halogen_bond_hits into two separate lists, one for 

distances and one for angles: 

dist1 = [] 

ang1 = [] 

for h in halogen_bond_hits: 

    dist1.append(h.constraints['DIST1']) 

    ang1.append(h.constraints['ANG1']) 

 

This will convert our data into a format that will allow us to easily plot DIST1 against ANG1.  

 

9. We are now ready to plot our data using the scatterplot function from matplotlib: 

plt.scatter(dist1, ang1) 

plt.title('Aromatic iodine - pyridine halogen bond geometry') 

plt.xlabel('DIST1') 

plt.ylabel('ANG1') 

plt.show(block=False) 

 

10. Run the interaction_search.py script now from the command line. The method to run the script 

from the command line will vary depending on the platform: 

• Windows: Open a Command Prompt window and navigate to the location of your script, for 

example, cd C:\users\your_username\scripts. Then, run C:\Program Files 

(x86)\CCDC\Python_API_2019\miniconda\python.exe interaction_search.py . 

• MacOS: Open a Terminal window and navigate to the directory with your scripts, for 

example, /users/your_username/scripts. Then run 

/Applications/CCDC/Python_API_2019/miniconda/bin/python interaction_search.py . 

• Linux: In a shell window, navigate to the directory with your script, for example 

/home/your_username/scripts. Then run 

/homeyour_username/CCDC/Python_API_2019/miniconda/bin/python 

interaction_search.py . 



 

Here we have plotted DIST1 against ANG1 in a scatterplot, and we have added titles to the plot itself 

as well as the axes. plt.show(block=False) should result in something similar to the following 

scatterplot being shown: 

 

 

Conclusions 

The substructure search has allowed us to investigate the variation between I···N distance and C-I···N 

angle in intermolecular halogen bonds between aromatic iodine and pyridine nitrogen. The plot we 

have generated reveals that there is a weak negative correlation between these parameters – as the 

contact distance becomes shorter the angle tends towards 180°. 

The concept of substructure searching was illustrated here, along with search settings and 

constraints. Additionally, we have covered how to generate scatterplots as well as some advanced 

Python functionality. 

There are several other ways to perform substructure searches, as well as several different search 

types, available in the CSD Python API that can be used to answer many complex scientific questions. 

You should now know how to use the CSD Python API to define a substructure search as well as 

how to specify additional geometric and search criteria. 

 

  



 

Case Study 4: Filtering the CSD to find organic hydrates 

Aim 

For many purposes, it is often useful to generate subsets of the CSD. This case study shows how to 

systematically search through the CSD to find a specific class of structure. It also shows how to apply 

search filters outside of a conventional search operation. 

Instructions 

1. Open your preferred text editor and create a new Python file called hydrates_filter.py that we 

will run from a command line later on. The following steps show the code that you should write 

in your Python file, along with explanations of what the code does. 

 

2. We will start by importing the necessary modules for interrogating the CSD and for applying 

filters: 
 

from ccdc import io, search 

 

In order to read the CSD, we must make use of the ccdc.io module. To apply filters, we must 

import the ccdc.search module. This is the syntax used if you need to import multiple 

modules from the same library. 

 

3. We want to specify some criteria that we can use to filter the CSD as we search through it. To do 

this, we can make use of a ccdc.search.Search.Settings instance similar to the one that 

we used in Case Study 3 above: 
 

settings = search.Search.Settings() 

settings.only_organic = True 

settings.not_polymeric = True 

settings.has_3d_coordinates = True 

settings.no_disorder = True 

settings.no_errors = True 

settings.max_r_factor = 7.5 

 

Here, our filter indicates that we only want to return organic, non-polymeric structures that are 

of high quality (with a crystallographic R-factor of 7.5 or less), without disorder and errors. 

 

4. Next, we want to set up a counter to track our search and set up an EntryReader to search the 

CSD: 
 

count = 0 

csd = io.EntryReader('CSD') 

 

5. We will now set up our output file with an EntryWriter instance and begin iterating through the 

CSD. It is often useful at this stage of a script to provide some feedback as to how it is 

progressing: 
 

with io.EntryWriter('hydrates.gcd') as writer: 

    for i, entry in enumerate(csd): 

        if i % 10000 == 0: 



 

            print 'Found {} hydrates from {} entries...'.format(count, i) 

 

Remember that the indentations here are important! Using the with syntax here means that our 

.gcd file (refcode list) will automatically close when the script is finished. The % is the modulo 

operator, which returns the remainder of dividing one number by another. This block of code 

will work through each entry in the CSD in turn, and provide feedback for every 10,000 entries it 

has assessed. 

 

6. The final script will take anywhere from 1 to 2 hours to run depending on the speed of your 

machine. To reduce the time to a few minutes for this workshop, we'll add the following: 
 

        # This block is only to save time. The entire check will take 1-2 hours. 

        if count > 200: 

            break 

        # end block 

 

7. Next, we want check that the current CSD entry passes the criteria that we outlined above. 

Make sure that this next piece of code is lined up under the last if statement so that it is part of 

the correct block: 
 

        if settings.test(entry): 

            molecule = entry.molecule 

            hydrate = False 

 

Here we are testing the current entry against the criteria that we specified previously – if an 

entry passes the test it will return True otherwise it will return False, and we can use this to 

decide whether we want to carry out the next instructions or not. If the entry passes our test, 

we want to start analysing the molecule object. We’re also setting a flag at this stage that we’ll 

use later when we’re deciding if we have a hydrate or not. 

 

8. We now want to check each component of the molecule object that we’re investigating, and 

check if we have any water molecules present in our structure. Again, make sure to check the 

indentation of your code – these next lines should line up with the last lines we’ve written: 
 

            for component in molecule.components: 

                if component.smiles == 'O' and component.all_atoms_have_sites: 

                    hydrate = True 

 

Here we are iterating through each component in the current structure and checking its 

corresponding SMILES string to identify any water molecules. We are also being particularly 

stringent to make sure that the water molecules that we find have explicit hydrogen atom 

positions – we want a high-quality data set! If the current entry contains a water molecule that 

passes our test, we set our hydrate flag to True for the next step. 

 

9. We want to write out the refcodes of any hydrated crystal structures that pass our test to our 

refcode list. The indentation here should line up under the last for statement: 
 

            if hydrate: 

                writer.write(entry) 

                count += 1 

 



 

We now make use of our hydrate flag so that we can control which entries are written to the 

output file. We also add one to our count for each entry that we write so that we can use this 

count in our feedback loop to keep track of our progress. 

 

10. Finally, at the end, we will print the number of hydrates we have found 

 
    print 'Finished: Found {} hydrates from {} entries.'.format(count, i) 

 

Your final script should look like this: 

from ccdc import io, search 

settings = search.Search.Settings() 

settings.only_organic = True 

settings.not_polymeric = True 

settings.has_3d_coordinates = True 

settings.no_disorder = True 

settings.no_errors = True 

settings.max_r_factor = 7.5 

count = 0 

csd = io.EntryReader('CSD') 

with io.EntryWriter('hydrates.gcd') as writer: 

    for i, entry in enumerate(csd): 

        if i % 10000 == 0: 

            print 'Found {} hydrates from {} entries...'.format(count, i) 

        # This block is only to save time. The entire check will take 1-2 hours. 

        if count > 200: 

            break 

        # end block 

 

        if settings.test(entry): 

            molecule = entry.molecule 

            hydrate = False 

            for component in molecule.components: 

                if component.smiles == 'O' and component.all_atoms_have_sites: 

                    hydrate = True 

            if hydrate: 

                writer.write(entry) 

                count += 1 

 print 'Finished: Found {} hydrates from {} entries.'.format(count, i) 

 

11. Now run the hydrates_filter.py script from the command line. (For information on how to do so, 

please see Case Study 3, step 10.) It should create a file, hydrates.gcd, in the directory you are 

working in where all the results will be captured. As the script progresses, you should see a 

feedback message displayed every 10,000 structures indicating how many entries that meet our 

criteria have been found so far. If you run the complete script by removing the time saving block, 

you should end up with around 13,000 organic hydrates in your refcode list that you can use for 

further analysis later. 

 

 



 

Conclusions 

Setting up filters has allowed us to search the CSD for organic hydrates, which we have captured in a 

refcode list, or .gcd file. 

The concept of iterating through entries in a database was introduced here, as well as using search 

criteria to act as filters. Additionally, we have recapped how to produce output files. 

While there are several standard filters that can be applied to searches, to answer more challenging 

scientific questions using the CSD Python API it is possible to construct bespoke filters that are 

tailored specifically to your needs. 

You should now know how to use the CSD Python API to define criteria for search filters as well as 

how to iterate through a structural database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Case Study 5: Tackling a scientific challenge using Python scripting 

Aim 

The best way to learn either a scripting language, or a new programmatic interface, is to apply them 

to a real scientific problem. This case study will aim to test your working knowledge of Python 

scripting and the CSD Python API by setting a real scientific challenge for you to answer. In each case 

the problem is addressable using only a standard installation of Python along with the CSD Python 

API, but could be tackled in several different ways. 

Approach 

Select one of the scientific challenges laid out below which appeals to you, perhaps something that 

is aligned with your research area or simply something that interests you as a scientist in general. 

Making use of the CSD Python API Documentation, along with the hints provided and help from your 

fellow workshop attendees, write a bespoke Python script to address the challenge chosen.  

Scientific Challenges 

1. When analysing crystal structures that appear to contain small voids, it is often useful to 

know for reference the volume of space commonly occupied by a water molecule. Remove 

the block of code starting with "# This block is only to save time." (through the line with "# 

end block"). Run this script again to generate the full list of hydrates. Using this list, calculate 

the average volume occupied by a water molecule in the CSD. 

Hint – The following snippet of code shows how to manipulate the underlying molecule of a 

crystal. Think of how you would identify the water atoms in each hydrated structure. 

molecule = crystal.molecule 

molecule.remove_atoms(molecule.atom(w.label) for w in water_atoms) 

crystal.molecule = molecule 

 

2. To create useful subsets of the CSD, you may wish to perform searches based on general 

descriptions of molecules. Construct a subset of the CSD containing only molecules that have 

X donors and Y acceptors, where X and Y are numbers of your choosing. 

Hint – You may find it easiest to iterate over the whole CSD entry by entry and then iterate 

over the atoms in a molecule. Note that you probably also want to use only the heaviest 

molecule per structure. 

3. Is there a greater likelihood of significant void space in a crystal structure within some space 

groups rather than others? To assess this, determine the median void space per structure as 

a function of the space group number.  

Hint – void space can only be calculated from the crystal object, using the space group 

number will help to avoid confusions around space group symbols (for example, P21/c is the 

same as P21/n, just a different setting). 

Conclusions 

You should now be confident in writing scripts using the CSD Python API to tackle scientific 

problems, as well as have a good working knowledge of the extent of the CSD Python API. 

http://www.ccdc.cam.ac.uk/docs/csd_python_api/

